Etude de système/Modélisation BTS 1							
SYSTEME: Chargeur sportif 3							
Durée : 4	Mesure de puissance sur le système						
Séquences	du chargeur sportif						

Domaine électrotechnique :

- Mise en ouvre des capteurs et API.
- Mise en œuvre d'une IHM.
- Recherche de schémas de connexion.
- Etalonnage des mesures effectuées sur les entrées analogiques.
- Mesure des performances énergétiques.

Domaine Physique appliquée :

- Déterminer les équations de mise à l'échelle de la mesure de courant et tension.
- Détermination des éléments d'un pont diviseur.

Analyse et mise en œuvre des moyens de mesure de la puissance consommée sur le chargeur sportif

Mise en œuvre de la logique programmée concernant l'IHM MTP05

Mise en œuvre de la logique programmée pour obtenir la puissance dans l'API.

Mise en œuvre de la logique programmée pour obtenir la tension dans l'API et réaliser l'étalonnage.

Détermination des résistances du diviseur de tension.

Recherche du câblage sur l'entrée analogique réservée à la mesure de la tension.

Mise en œuvre de la logique programmée pour obtenir le courant dans l'API et réaliser l'étalonnage.

Recherche du câblage sur l'entrée analogique réservée à la mesure du courant.

Etablir la correspondance entre le signal image du courant et I.

Installer les moyens de mesure sur l'alimentation du Gyrophare.

Mise en situation :

On désire effectuer une mesure de la puissance, courant et tension consommée par les charges du chargeur sportif.

Pour cela, on va utiliser un capteur à effet Hall permettant d'obtenir une image du courant et des entrées analogiques de l'automate utilisé.

1. Mesure du courant alimentant le gyrophare.

- 1.1. Réaliser le schéma de montage permettant d'alimenter le gyrophare alimenté sous une tension de 24V DC. On prendra soin de faire passer le courant par le fil passant dans le capteur à effet Hall. Il sera nécessaire de mesurer directement le courant et la tension à l'aide d'un multimètre.
- 1.2. Mettre sous tension la platine afin de mettre sous tension le capteur à effet Hall.
- 1.3. Mesurer la valeur du signal image délivré par le capteur à effet hall pour différentes valeurs du courant. Indiquer les résultats dans un tableau sur une fiche Excel.

I en A					
U					
image					

- 1.4. Tracer I courbe $U_{image} = f(I)$.
- 1.5. Déterminer la valeur de K dans la relation U_{image} = K.I
- 1.6. Compléter le schéma suivant permettant de connecter le capteur à l'entrée I_B de l'automate programmable XD26.

- 1.7. Mettre sous tension l'API.
- 1.8. Réaliser la configuration de l'API en spécifiant le modèle suivant :

-	rôleur —					
Compact versions						
		C	D12 CB12	CD20	CB2	0
Expandable versions	e		D10 XB10	XD26	XB2	326
		1	0 ENTREES/SORTIES A	AVEC EXTENSION	Au	tres
hoix du type de contrôleur —						
Туре	Référer	nce	Entrées	Sorties		
XD26 24VDC SMART	889741	61	10 TOR + 6 (0-10V)	10 RELAIS		
KD26 RBT 24VDC SMART	889745	61	10 TOR + 6 (0-10V)	10 RELAIS		
XD26S 24VDC SMART	889741	62	10 TOR + 6 (0-10V)	10 TOR STA	TIQUE	
XD26 230VAC SMART	889741	63	16 TOR	10 RELAIS		
	889/41	64 or	16 IOR	10 RELAIS		
XD26 24VAC SMART				TO RELAIS		

1.9. Configurer l'entrée I_B permettant de lire des données analogiques :

- 1.10. Sachant que pour U_{image} = 10V sur l'entrée I_B, la valeur numérique correspondante est I _{numérique} =1023.Exprimer par proportionnalité, la relation entre U _{image} et I_{numérique}.
- 1.11. En remplaçant U_{image} par K.I trouvé en 1.5, exprimer la relation I numérique = f(I).
- 1.12. Mettre sous tension et vérifier la correspondance entre la valeur de l et la valeur numérique lue dans l'automate en mode monitoring.
- 1.13. En utilisant l'outil gain du menu CALC, on relira la valeur l numérique venant de l_B en entrée du bloc. Définir les valeurs de A,B et C permettant d'obtenir la valeur de lx100 (par exemple I= 1,34A et on souhaite afficher 134).

1.14. Faire un essai, en mode monitoring et vérifier la correspondance avec la valeur de l'affichée sur l'ampèremètre et la valeur en sortie du bloc Gain.

2. Mesure de la tension alimentant le gyrophare.

La tension appliquée aux bornes du gyrophare sera de 24V DC maximum mais l'entrée I_C que l'on réserve pour mesurer cette tension dans l'automate ne peut pas dépasser 10V.

Par conséquent, il faudra définir les valeurs des résistances d'un pont diviseur pour ne pas dépasser 10V.

Ensuite, on mettra à l'échelle afin d'obtenir une valeur numérique image de cette tension.

2.1. Si on prend R2 = $10K\Omega$, déterminer la valeur de R1 afin d'avoir 10V aux bornes de R2 sous une alimentation de 24V DC.

2.2. Compléter le schéma de connexion permettant de placer l'image de U gyrophare sur l'entrée IC.

- 2.3. Placer un voltmètre entre le 0V et l'entrée I_C et noter la valeur de U_2 par rapport à une tension U de 24V appliquée au gyrophare.
- 2.4. Interpréter la différence entre la valeur théorique et votre relevé.
- 2.5. Connecter l'API et se mettre en mode monitoring de manière à lire V_{numérique}.
- 2.6. Calculer le coefficient de proportionnalité entre U_{Gyrophare} et V_{numérique}.
- 2.7. Configurer l'entrée I_C permettant de lire des données analogiques.
- 2.8. En utilisant l'outil gain du menu CALC, on relira la valeur V _{numérique} venant de I_C en entrée du bloc. Définir les valeurs de A,B et C permettant d'obtenir la valeur de U _{gyrophare}x100 (par exemple U= 23,67V et on souhaite afficher 2367).
- 2.9. Faire un essai, en mode monitoring et vérifier la correspondance avec la valeur de U affichée sur le voltmètre et la valeur en sortie du bloc Gain.
- 2.10. Insérer un multiplicateur du menu **CALC** afin d'obtenir le calcul de la puissance.

- 2.11. Mettre sous tension et vérifier le calcul de la puissance obtenue en sortie du bloc multiplicateur. Le résultat est' il conforme à la puissance attendue ?
- 2.12. Sachant que la valeur des entiers dans les automates de cette marque doit être compris dans l'intervalle : [-32768, +32767],placer un coefficient de valeur 100 du menu **PROG** afin de respecter les contraintes numériques.

2.13. Placer le bloc SL Out permettant de transférer les mots sur un écran tactile.

3. Mise en ouvre du pupitre tactile.

3.1. Lancer le logiciel MTP WIN :

3.2. Créer un nouveau projet :

3.3. Sélectionner le modèle MTP 05 Monochrome :

Sélection du mo	dèle	X
Modèle de MTP	MTP05 / Monochrome	ок
Modèle de contrôleur	Millenium3	
🗖 Garder les par	amètres actuels	

3.4. Clique sur la page 0 de la carte des pages programmable :

3.5. Placer du texte pour présenter les résultats de mesures :

3.6. Placer trois composants de données permettant l'affichage des mesures :

🗖 0 (Ecran de base)	<inconnu1></inconnu1>		🔓 Standard (MTP05 mono) 🔀
			Type de composant
Courant I	₽₽₽₽₩₩	Ampère	er Supprimer Renommer
Tension U	^D ₽₽‡××	Volt	
Puissance P	DRRXX	Watt	
			Data

3.7. Configurer les trois données permettant de fixer le mot et la position de la virgule :

Configuration du	mot 30 pour la mesure de coura	nt I				
N' de données0						
Liste Paramètres de base Entrée Inverser/clignoter Couleur et forme Option Par I OK						
Données à afficher	Taille	Annuler				
Nombre de chiffres (3-5) 🔋 🛄	Police de caractères					
Format des données DÉC(1 mot)	€ 100% C 50%					
	Verticalement 1 2 4 8					
	Horizontalement 1 2 4 8					
Suppression du zéro						
C Off	Afficher les positions décimales					
@ On	COff					
- Pogistro do référence	€ On					
WSLOUT30	Positions 2 Chiffres décimales					

3.8. Tester votre programme en connectant le pupitre à l'API et en allumant le gyrophare.