Etude de système/Modélisation BTS 1								
LOGICIEL: PSIM 9.1								
Durée : 4	Modélisation de circuits en courant							
Séquences	continu							

🚰 PSIM 9.1.1

Domaine électrotechnique :

- Application au circuit DC utilisé dans les circuits de commande des armoires électriques

Domaine Physique appliquée :

- Application de la loi d'Ohms et des lois de Kirchhoff.

Structure du TP

1. Identification des différentes résistances

On dispose de 3 ensembles de résistances différentes

Et on donne le code des couleurs

1.1. Repérer les couleurs des trois types de résistances et indiquer leurs valeurs à l'aide du code des couleurs.

R1	Couleurs : MARRON ROUGE JAUNE OR	Valeurs :Ω
R2	Couleurs : VERT BLEU ORANGE OR	Valeurs :Ω
R3	Couleurs : MARRON NOIR ORANGE OR	Valeurs :Ω

1.2. Vérifier vos valeurs grâce à un Ohmmètre mis à votre disposition.

2. Association de résistances.

- 2.1. Brancher R1, R2 et R3 en série.
- 2.2. Dessiner le schéma de cette association.
- 2.3. Mesurer la valeur de la résistance équivalente $R_{équiv mes}$ à l'Ohmmètre.
- 2.4. Mettre en relation la valeur obtenue avec les valeurs des dipôles R1, R2 et R3.
- 2.5. Indiquer la relation permettant de calculer la résistance équivalente de dipôle résistif branchés en série.
- 2.6. Brancher en parallèle R1 et R2.
- 2.7. Dessiner le schéma de cette association.
- 2.8. Mesurer la valeur de la résistance équivalente $R_{équi 12}$ à l'Ohmmètre.

On donne la relation générale de l'association des dipôles branchés en parallèles :

$$R_{equi} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}}$$

- 2.9. Retrouver les résultats de mesures en appliquant cette relation.
- 2.10. Faire l'association R1,R2 ,et R3 en parallèle.
- 2.11. Dessiner le schéma.
- 2.12. Mesurer la valeur de $R_{\acute{e}qui 123}$ à l'Ohmmètre.
- 2.13. Vérifier votre mesure grâce à la relation.

3. Vérification de la loi d'Ohms :

On donne le schéma suivant :

- 3.1. Dessiner le schéma de montage permettant de mesurer le courant l et la tension.
- 3.2. Après avoir fait vérifier le montage par votre professeur, mesurer l et U.
- 3.3. Calculer la valeur de la fraction $\frac{u}{r}$.
- 3.4. Comparer avec la valeur de R1 déterminé précédemment.
- 3.5. Enoncer, alors la loi d'Ohms.

4. Loi des mailles

On donne le schéma suivant :

- 4.1. Dessiner le schéma de montage permettant de mesurer le courant l et les tensions U,U1,U2 et U3.
- 4.2. Noter la valeur de la somme des tensions U1 + U2 + U3.
- 4.3. Mettre en relation ce résultat avec U.
- 4.4. Enoncer la loi des mailles.
- 4.5. Grâce aux lois d'association des résistances, établir littéralement et calculer la valeur de l.
- 4.6. Comparer à la mesure.

5. Loi des nœuds.

- 5.1. Dessiner le schéma de montage permettant de mesurer le courant I, I1 et I2 et les tensions U, U1, U2 et U3.
- 5.2. Noter la valeur de la somme des courants I1 + I2.
- 5.3. Comparer à la valeur de l.
- 5.4. Enoncer la loi des nœuds.
- 5.5. En appliquant la loi d'ohms, calculer la valeur de l1 et comparer à la mesure.
- 5.6. En appliquant la loi d'association des résistances en série, calculer R_{équiv1}.
- 5.7. Calculer alors la valeur de l2 par la loi d'Ohms et comparer à la mesure.
- 5.8. En appliquant la loi d'association des résistances en parallèle, Calculer $R_{équiv2}$ à partir de R1 et $R_{équiv1}$.
- 5.9. Calculer alors la valeur de l par la loi d'Ohms et comparer à la mesure.

6. Exercices sous Psim 9.1.

6.1. Lancer l'application Psim 9.1 depuis le bureau.

6.2. Sélectionner les résistances pour les placer sur la feuille de travail. PSIM - F:\Physique appliquee\Premiere annee\Cycle1 TP 2014\circuit à courant continu\CIRCUI

File Edit View Subcircuit	Elements Simulate	Options Utilities Window	Help	
	Power 🕨 🕨	RLC Branches	•	Resistor
	Control 🕨 🕨	Switches	•	Inductor
-	Other 🕨 🕨	Transformers	•	Capacitor
	Sources 🕨 🕨	Magnetic Elements	•	Capacitor (electrolytic)
	Symbols 🔹 🕨	Other	•	RL
	Event Control	Motor Drive Module	•	RC
	SimCoder •	MagCoupler Module	•	RC (electrolytic)
	Dimeodel F	MagCoupler-RT Module	•	LC

6.3. Un clic droit permet de faire pivoter le composant, placer alors 3 résistances.

Un double clic sur le composant permet d'accéder aux 6.4. paramètres, nommer et donner la valeur de la résistance.

	Resistor								
	Parameters Other Info Color								
	Resistor Help								
			Display						
	Name	R1							
•••••	Resistance	120k							
	Current Flag	0							
} ": :									

6.5. On obtient alors les trois résistances du TP.

6.6. Sélectionner la source de tension DC.

🕷 PSIM - untitled2*		
File Edit View Subcircuit	Elements Simulate	Options Utilities Window Help
	Power Control Other	
	Sources > Symbols >	Voltage
untitled2*	Event Control 🕨 SimCoder 🕨	Ge Constant Sine Time 3-ph Sine Ge Ground Triangular
		Ground (1) Ground (2) Square

6.7. Fixer les paramètres en double cliquant sur l'élément.

	DC (battery)		
	Parameters Other Info	Color	
	DC voltage source		Help
			Display
	Name	VDC1	V
SHE SHE SHE SHE S	Amplitude	24	
· · · · · · · · · · · ·			
· · · · · · · ·			120k
	VDC1		····>
		10k · · · · · · ·	
		: : ≶ R3	
		· · { · · · · · · · · ·	

6.8. On obtient le circuit suivant :

6.9. Il faut placer les appareils de mesures de courant, pour cela prendre l'objet ampèremètre :

6.10. Double cliquer sur les ampèremètres et fixer les noms et l'affichage de la valeur en simulation.

	Current Probe	×
	Parameters Other Info Color	
· · · [@] ·	Current probe Help	
	Display	
	Name I	
	Show probe's value during simulation	
	Runtime graph: I 🌇	
NO NO NO ROLI		

6.11. On obtient le schéma suivant :

6.12. Il faut place une masse pour que la simulation fonctionne :

🛚 PSIM - untitled2*						
File Edit View Subcircuit	Elements	Simulat	е	Options	Utilities	V
	Power Control Other		• •	<\×	⊋] 熟読	影
	Sources Symbol:	; ;	Þ Þ	Voltage Current		
🛛 untitled2*	Event C SimCod	iontrol er) 	Ge Constar Time Ge Groupd	nt	
		· · ·	•	Ground Ground Ground	(1) (2)	
· · · · · · · · · · · · · · · · · · ·		12:1	1			

Ce qui donne :

6.13. On place les fils grâce à l'outil « Wire » :

6.14. On place maintenant les capteurs de tension :

e PS	IM -	untitle	ed2*								
File	Edit	View	Subcircuit	Elements	Simulate	Options	Utilities	Window	Help	P	
D	a		XB	Power	•		2 8:8	₩¥ 🚺		জাম	
			Control	Control 🔹 🕨							
•		Other	×.	Switch	Controlle	rs	•				
			Sources	; 🕨	Sensor	'S		•	Voltage	Sensor	
		Symbols	s 🕨	Probes	;		•	Current	Sensor		
						E	- Dia -lua		- N°		

Puis les voltmètres

a Ps	PSIM - untitled2*												
File	Edit	View	Subcircuit	Elements	Simulate	Options	Utilities	Windo	w He	lp			
D	2		人自	Power Control) 	X	⊋跳	魏道 .	/ @	₽ 🖑 🗸	AL		F 1
		-		Other	۱.	Switch	Controlle	rs	•				
				Sources	•	Sensor	s		•				
				Symbols	; •	Probes			•	• Voltage	e Probe		- 1

En mettant les fils, on obtient : (penser à renommer et rendre visible la simulation des tensions)

6.15.	Lancer la simulation par :
-------	----------------------------

🗃 PS	5IM -	untitl	ed2*						
File	Edit	View	Subcircuit	Elements	Simulate	Options	Utilities	Window	Help
D	1		XB		Simulation Control				
					Run Simulation F8				
		<u> </u>			Cancel	Simulation	n (Ctrl-Shift-F	8

- 6.16. Noter les résultats correspondants aux tension U,U2 et U3 ainsi que les courants I, I1 et I2.
- 6.17. Vérifier la correspondance aux valeurs mesurées.

7. Exercices à résoudre.

Exercice 1

- 1 Donnez l'expression littérale de la tension Ve dans le circuit ci-contre.
- 2 Calculez la valeur numérique de V2 sachant que V1 = 12 V, R1 = 1 k Ω et R2 = 2 k $\Omega.$

Exercice 2

- 1 Donnez l'expression littérale de la tension V1 dans le circuit ci-contre.
- 2 Calculez la valeur numérique de V2 sachant que $U_{\rm S}~=~9~V,~R_1=~4.7~k\Omega~et~R_2=6.8~k\Omega.$

Exercice 3

- 1 Fléchez les tensions $V_{\text{CB}}, \, V_{\text{BA}}, \, \text{et} \, V_{\text{CA}}$ sur le circuit ci-contre.
- 2 Donnez l'expression littérale des tensions V_{CB} et V_{BA} en fonction de la tension $V_{\text{CA}}.$
- 3 Calculez V_C3 et V_BA sachant que V_CA = 3 V, R1 = 820 k Ω et R2 = 270 k $\Omega.$

Exercice 4

1 – Donnez l'expression littérale de R_{eq} dans le *schéma 2*, afin que le *schéma 1* soit équivalent au *schéma 2*. 2 – Calculez V₂ dans le *schéma 1*, sachant que V₁ = 10 V, R₁ = 68 k Ω , R₂ = 18 k Ω et R₃ = 22 k Ω .

Exercice 5

1 – Donnez l'expression littérale de Req dans le schéma 2, afin que le schéma 1 soit équivalent au schéma 2.

2 - Calculez la valeur numérique de R_{eq}, sachant que V₁ = 14 V, R₁ = 2.7 k Ω , R₂ = 1.2 k Ω et R₃ = 3.3 k Ω .

3 - En déduire la valeur de la tension V2 dans le schéma 1.